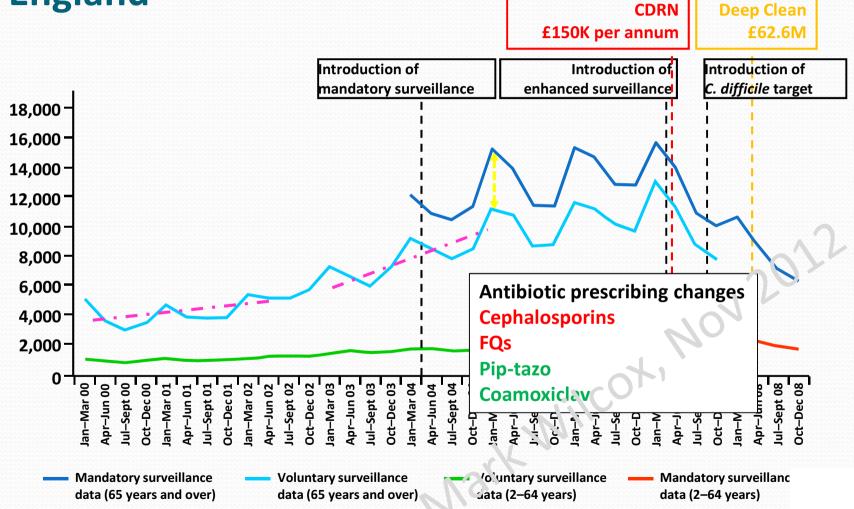
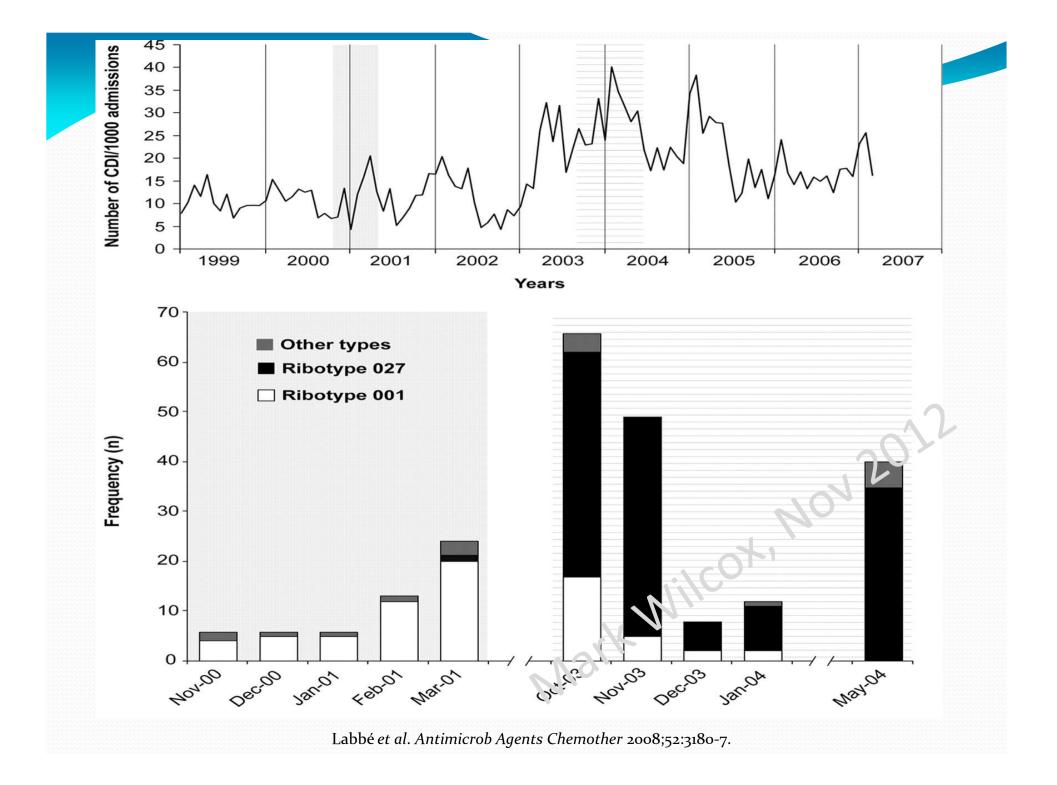

Surveillance and control of *C. difficile* infection (CDI) in UK

Professor Mark Wilcox

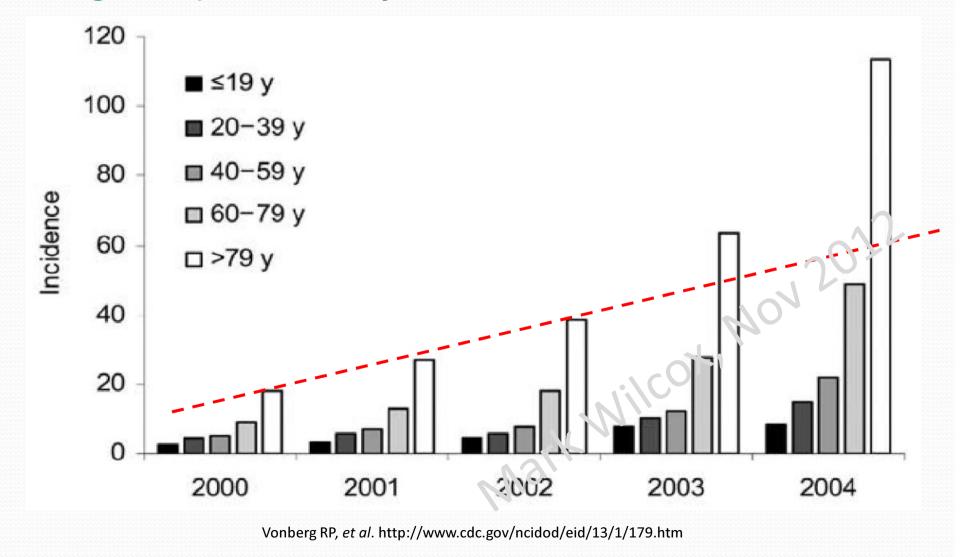
Leeds Teaching Hospitals, University of Leeds, Health Protection Agency

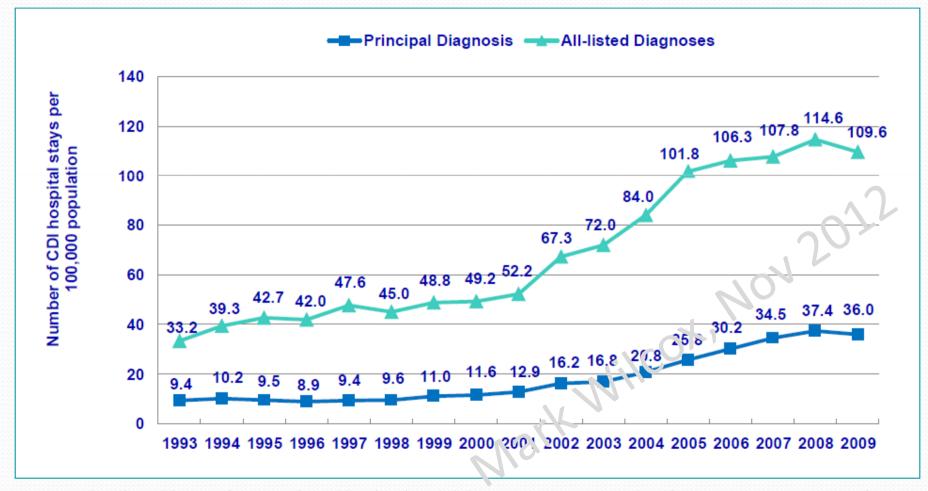

CDI key control measures

- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
- Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water
- Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients



Unless you can see what's going on, how can you control it ?


C. difficile Reports and Key Interventions, England


National Audit Office. *Reducing Healthcare Associated Infections in Hospitals in England*. London, England: National Audit Office; 2009. Copyright © National Audit Office. Table data from the Health Protection Agency.

Incidence of CDAD per 100,000 inpatients (discharge diagnoses) in Germany 2000-2004

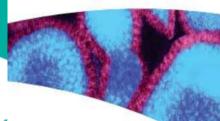
Trends in hospital stays associated with CDI per 100,000 population, USA, 1993–2009

Lucado, J. (Social & Scientific Systems), Gould, C. (CDC), and Elixhauser, A. HCUP Statistical Brief #124. January 2012. Agency for Healthcare Research and Quality, Rockville, MD. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb124.pdf

C. difficile surveillance, England

- All NHS hospitals required to report each CD laboratory positive each month
 - Location, demographics;
 - Risk factor data optional;
 - Root Cause Analysis of cases;
 - Mandatory reduction in CDI rates;
 - DH Improvement Teams; HPA experts
- C. difficile Ribotyping Network for England & N.I. (CDRN)

101201.


• All C. difficile related deaths are recorded

Key points (i)

- Early warning sytems are vital to identify changes in CDI incidence
- Mandatory reporting of laboratory *C. difficile* positives (and MRSA bacteraemias) has been in place for all NHS hospitals in England since 2004 (and 2001)
- Mandatory reporting is associated with a clear increase in the detection of cases compared voluntary surveillance data
- Targets/objectives were subsequently introduced at both national and institutional levels. More recently these have been 'enhanced' using financial penalties

National Standard. Local Action

Health and Social Care Sta and Planning Framework

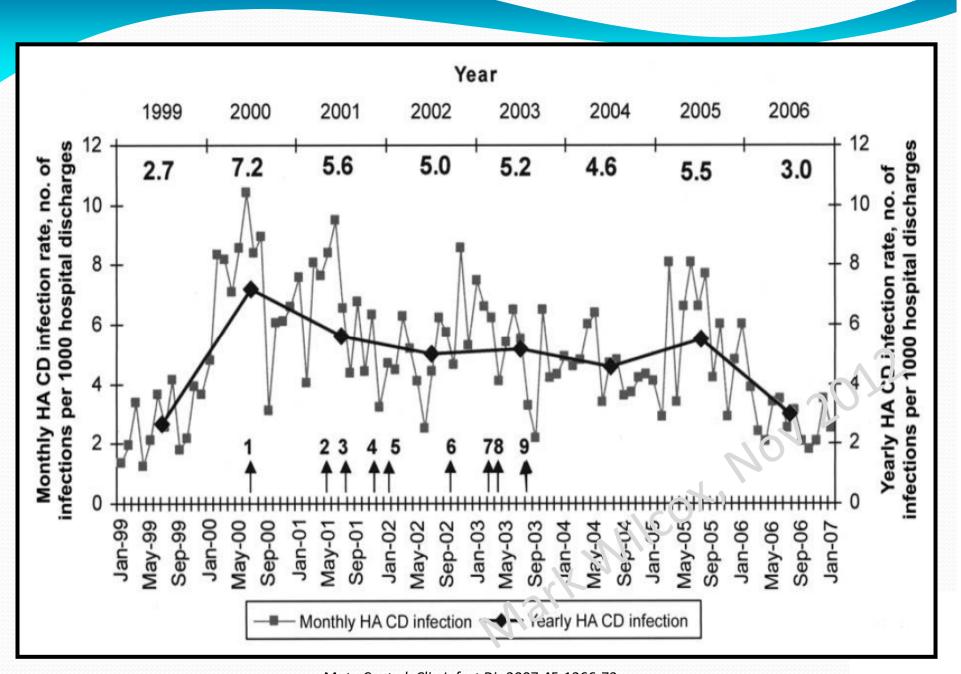
2005/06-2007/08

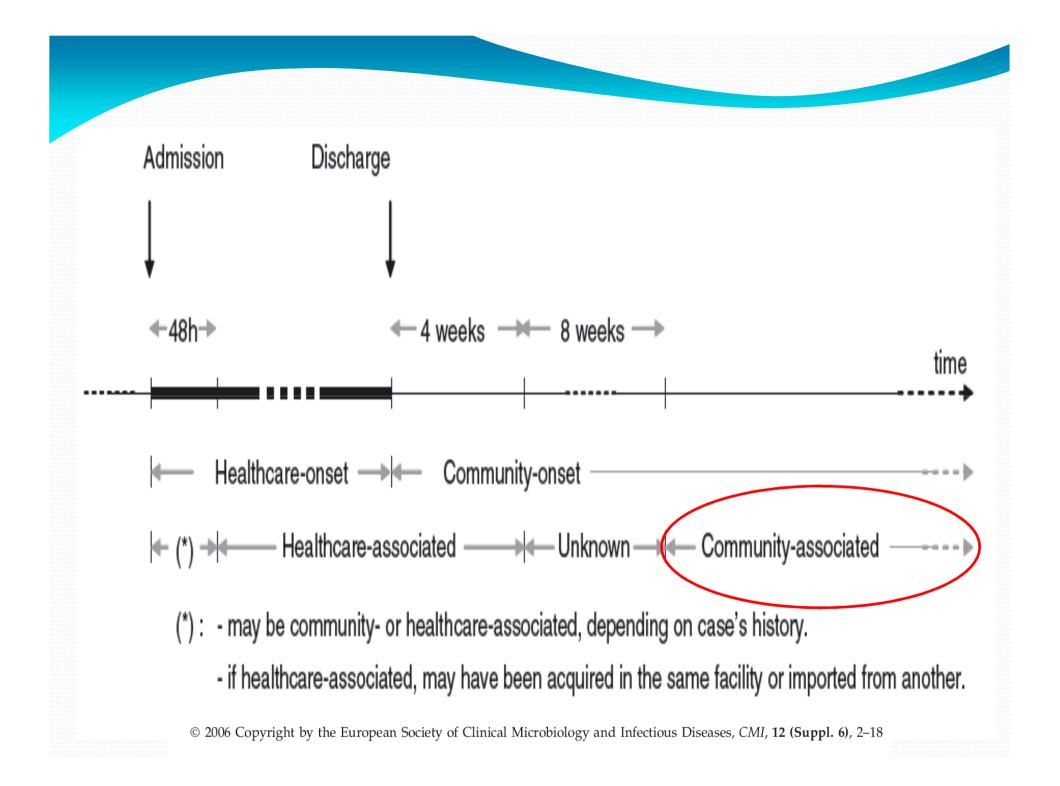
Winning Ways

Working together to reduce Healthc Associated Infection in England

Report from the Chief Medical Officer

Towards cleaner hospitals lower rates of infection A summary of action


DEP Department of Health


A Matron's Charter: An Action Plan for Cleaner Hospitals

NHS

Muto C, et al. Clin Infect Dis 2007;45:1266-73.

CDI in the community

 A large proportion of community CDI cases do not have a recent history of antibiotic use or hospital admission

> Wilcox *et al. J Antimicrob Chemother* 2008; 62: 388-96. MMWR Morb Mortal Wkly Rep. 2008 Apr 4;57(13):340-3.

 Some 'community' cases are clearly potentially related to healthcare

clearer data

- Poorly understood causes community focussed surveillance and studies
- How many cases are missed in the community (100:1)? increased submission/testing
- Relevance to care/nursing homes community focussed surveillance and studies
- Are community cases managed optimally? better communication to GPs

Key points (ii)

- Very large decreases in the incidences of MRSA bacteraemias (>70%) and *C. difficile* (>70%) occurred following the introduction of mandatory surveillance and target/objective setting
- Have not proven which were the key interventions responsible for these marked reductions in HCAI
- Comparing what introductions occurred when in different institutions may help to determine the key interventions
- We know very little about community CDI

CDI key control measures

- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
- Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water
- Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients

Which samples are sent for testing? Some... which ones... all

Which tests are used? Good... bad... ugly

2×1 NON 2012 Which positives are reported? Some... which ones... all

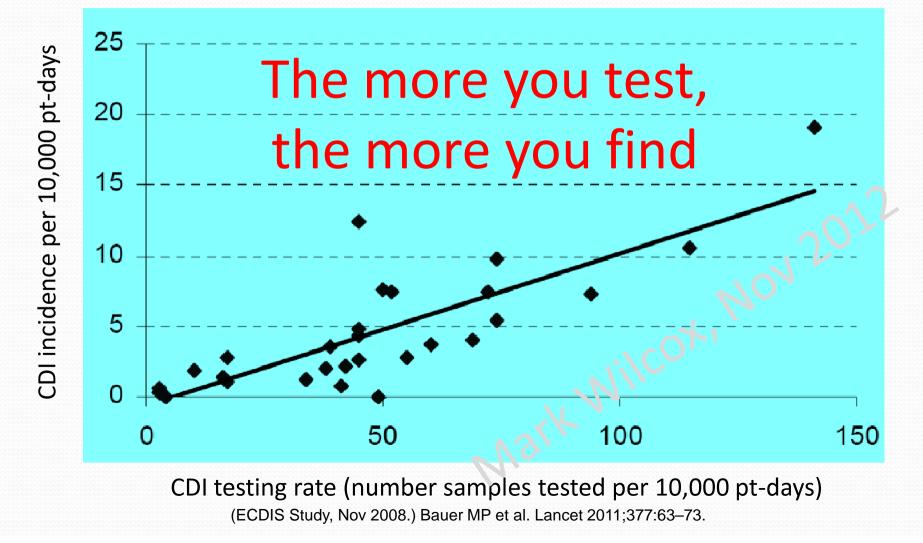
Algorithm for Management of Patient with Unexplained Diarrhoea

Suspected Clostridium difficile infection (CDI)

If a patient has diarrhoea (Bristol Stool Chart types 5-7) that is not <u>clearly</u> attributable to an underlying condition (e.g. inflammatory colitis, overflow) or therapy (e.g. laxatives, enteral feeding) then it is necessary to determine if this is due to CDI. If in doubt please seek advice.

This pathway relates to the diagnosis of CDI. Patients should be considered for treatment of CDI *before* test results are available, particularly if symptoms / signs indicate severe infection. Patients with suspected infectious diarrhoea should be isolated to prevent the transmission of *C. difficile*, norovirus or other transmissible pathogens.

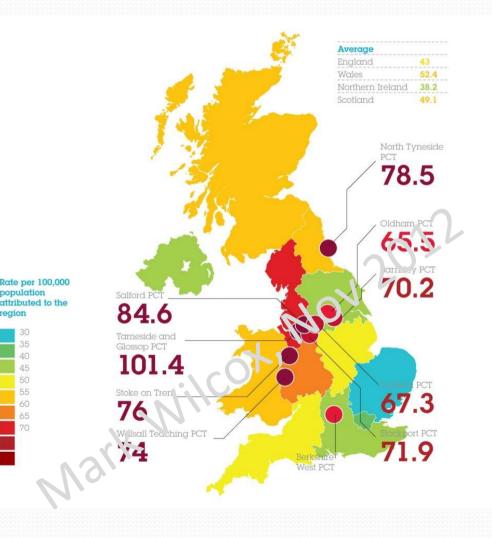
Ideally isolate patient in a single room - if unable to do this within 2 hours escalate the problem.


Collect stool specimen & send to Microbiology

In order for the specimen to be processed for *C. difficile* the sample must take on the shape of the container and ideally be at least ¹/₄ filled (to indicate the patient has diarrhoea).

Diarrhoeal samples should be tested for *C. difficile* from:

- hospital patients aged >2 years, and
- community patients aged <u>>65 years</u>, and
- community patients aged <65 years whenever clinically indicated.


Correlation between frequency of CDI testing and measured CDI incidence

Variation in CDI rates - real or fiction?

CDI rates vary widely between hospitals

- may reflect the gap between the best and worst performers
- and/or the accuracy of diagnosis and reporting

CDI laboratory diagnosis

Target	Testing method				
<i>C. difficile</i> toxin	Cell cytotoxicity assay*				
	Immunoassays (EIA & membrane)				
C. difficile	Culture				
	Antigen (GDH) detection				
Toxigenic <i>C. difficile</i>	Cytotoxigenic culture*				
	PCR				

*Reference test methods detect different targets and are NOT directly comparable

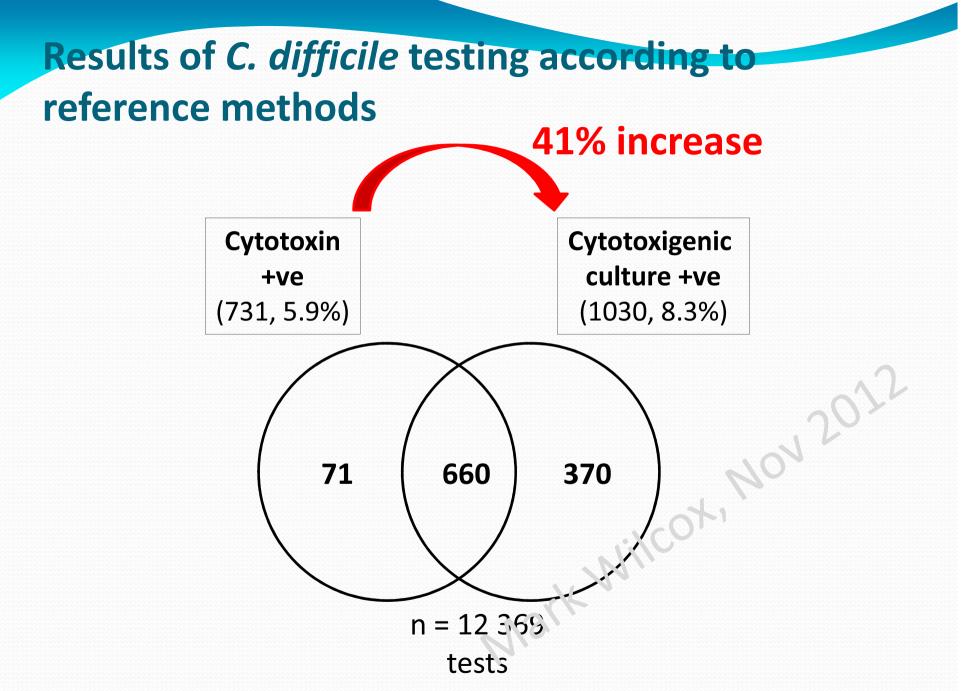


Planche TD et al. Clinical validation of *C. difficile* infection diagnostics: importance of toxin detection. 52nd ICAAC, 2012. Abstract D-160.

The more you test, the more you find

"We introduced PCR testing and our CDI rate went up."

"No, it didn't. The CDI rate stayed the same; you just issued more positive results." GDH EIA (or NAAT) positive, toxin EIA (or cytoxin) positive:

CDI is likely to be present

ightarrow for mandatory reporting to HPA

or

GDH EIA (or NAAT) positive, toxin EIA negative:

- C. difficile could be present i.e. potential
- C. difficile excretor
- ightarrow not for mandatory reporting

(but may have transmission potential and be suitable for local reporting)

or

GDH EIA (or NAAT) negative, toxin EIA negative:

C. difficile or CDI is very unlikely to be present

ightarrow not for mandatory reporting

but may have transmission potential (other pathogens)

Refer to the following local policies:

- Remember the **SIGHT** list
- *Clostridium difficile* Policy
- *Clostridium difficile* Treatment Guideline
- Source Isolation Policy
- Source Isolation Cleaning Policy

Consider other causes of diarrhoea Consider continuation of single room isolation and other measures to reduce risk of CDI

Consider other causes of diarrhoea; if not infective may consider ending single room isolation

Algorithm for Management of a Patient with Unexplained Diarrhoea Suspected Clostridium difficile infection (CDI)

If a patient has diarrhoea (Bristoi Stool Chart types 5-7) that is not <u>clearly</u> attributable to an underlying condition (e.g. inflammatory colitis, overflow) or therapy (e.g. laxatives, enteral feeding) then it is necessary to determine if this is due to CDI. If in doubt please seek advice.

> This pathway relates to the diagnosis of CDI. Patients should be considered for treatment of CDI before test results are available, particularly if symptoms / signs indicate severe infection. Patients with suspected infectious diarrhoea should be isolated to prevent the transmission of C. difficile, norovirus or other transmissible pathogens.

ideally isolate patient in a single room - if unable to do this within 2 hours escalate the problem.

Collect stool specimen & send to Microbiology

In order for the specimen to be processed for C. difficile the sample must take on the shape of the container and ideally be at least ¼ filled (to indicate the patient has diarrhoea).

Refer to the following local policies:

Clostridium difficile Infection Policy

Source isolation Cleaning Policy

Consider other causes of diarrhoea.

other measures to reduce risk of CDI.

consider ending single room isolation.

Source Isolation Policy

Clostridium difficile Treatment Guideline

Inform patient, relative/carer of test result

Consider continuation of single room isolation and

Consider other causes of diarrhoea: if not infective may

Remember the SIGHT list (see bottom of page).

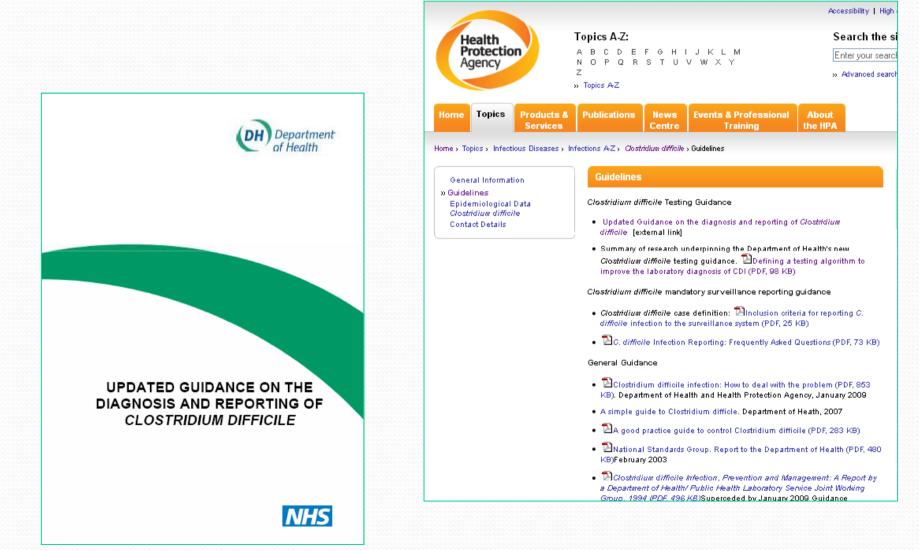
Diarrhoeal samples should be tested for C. d\ffic\le from: * hospital patients aged ≥2 years, and, * community patients, aged ≥65 years, and * community patients aged <65 years wherever clinically indicated.

GDH EIA (or NAAT) positive, toxin EIA or cytotoxin positive:

CDI is likely to be present, - for mandatory reporting to HPA;*

OR GDH EIA (or NAAT) positive, toxin EIA negative: C. difficile could be present i.e. potential C. difficile excretor,

 not for mandatory reporting (but may have transmission potential and be suitable for local reporting);
 OR


GDH EIA (or NAAT) negative, toxin EIA negative: C. difficile or CDI is very unlikely to be present, - nor for mandatory reporting but may have transmission potential (other pathogens)

* Please note other indications for mandatory reporting of CDI at: http://www.hpa.org.uk/web/IPAweb@iPAweb@tandard/IPAweb_C/117 8748015058

NE: A cytotosin assay may be considered as an alternative to a sensitive tooin EIA, but it yields slower results and this will need to be taken into account when making management decisions on infection control.

- S Suspect that a case may be infective when there is no clear alternative cause for diarrhoea
- Isolate the patient within 2 hours
 G Gloves and aprons must be used for all contacts with the patient and their
- environment H Hand washing with soap and water should be carried out before and
- after each contact with the patient and the patient's environment T Test the stool for C. difficile by sending a specimen immediately

http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/ClostridiumDifficile/Guidelines/

http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/@dh/@en/documents/digitalasset/dh_133016.pdf

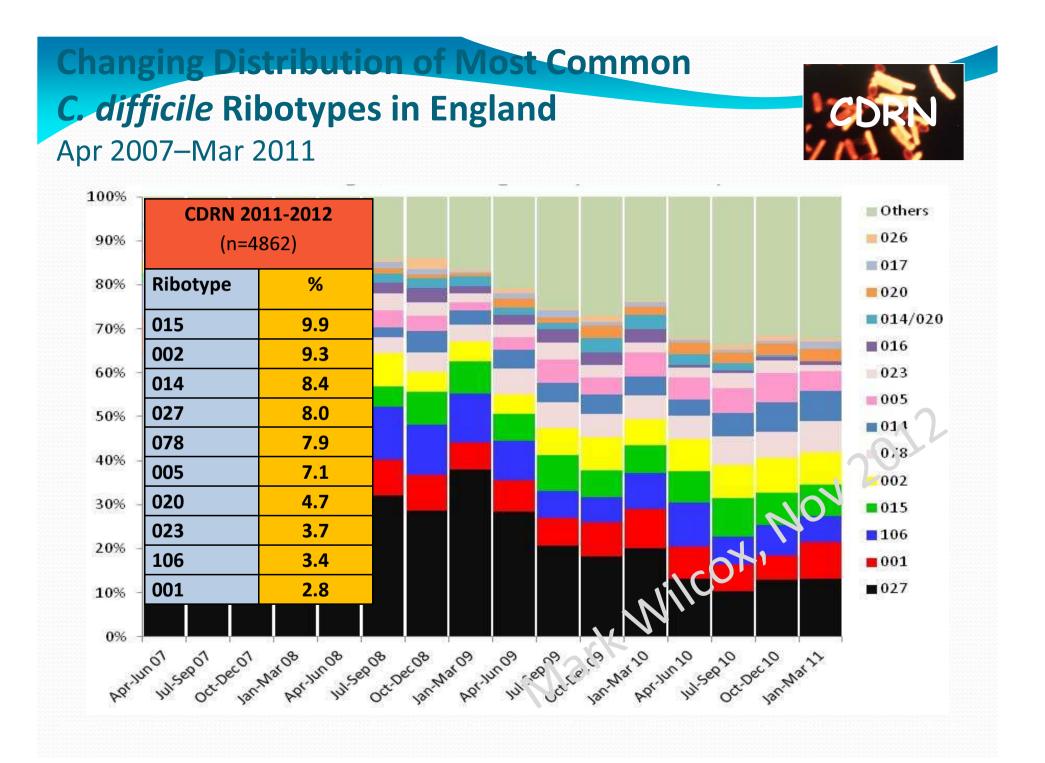
Wilcox, Planche, Crook, Shetty, Davies, Coen, et al. 2012.

Key points (iii)

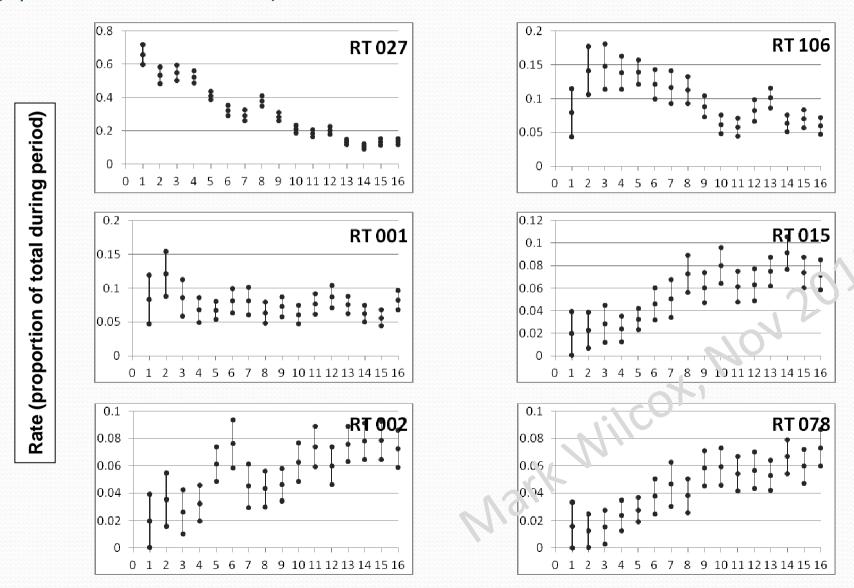
- Laboratory testing
 - The more you test, the more you find
 - The two CD testing reference methods do not have the same clinical implications
 - Toxin (CTA) positive samples are associated with increased mortality. This is not true if only toxigenic strains (CC) are present
 - Results support CDI being defined by a positive toxin test
 - Use of a high sensitivity screening test (GDH or toxin gene PCR) can rapidly identify who may have CDI, but a second (toxin) test is needed to provide specificity

CDI key control measures

- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
- Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water
- Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients


Clinical Infectious Diseases Advance Access published August 3, 2012

MAJOR ARTICLE


Changing Epidemiology of *Clostridium difficile* Infection Following the Introduction of a National Ribotyping-Based Surveillance Scheme in England

M. H. Wilcox,¹ N. Shetty,² W. N. Fawley,¹ M. Shemko,² P. Coen,² A. Birtles,³ M. Cairns,⁴ M. D. Curran,⁵ K. J. Dodgson,³ S. M. Green,⁶ K. J. Hardy,⁷ P. M. Hawkey,⁷ J. G. Magee,⁸ A. D. Sails,⁸ and M. W. D. Wren²

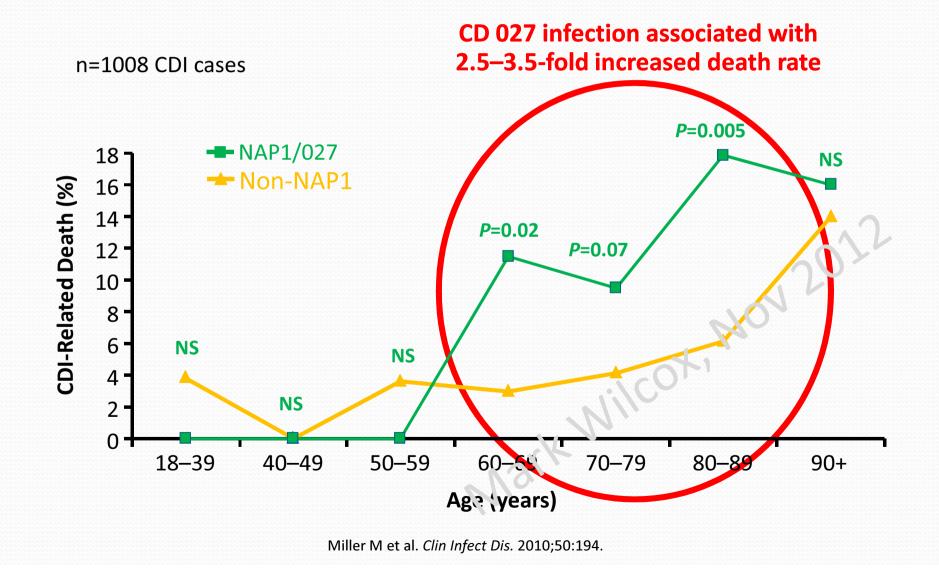
¹Department of Microbiology, Leeds Teaching Hospitals Trust and University of Leeds; ²Health Protection Agency Collaborating Centre at Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust; ³North West Regional Health Protection Agency Laboratory, Manchester; ⁴Public Health Laboratory London, Health Protection Agency, Division of Infection, The Royal London Hospital; ⁵Health Protection Agency Public Health Laboratory, Addenbrooke's Hospital, Cambridge; ⁶Health Protection Agency South East, Southampton Laboratory, Southampton General Hospital; ⁷Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham; and ⁸Health Protection Agency Public Health Laboratory Newcastle, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom

Trends in the quarterly rates (proportions) of most frequently identified *C. difficile* ribotypes in England (April 2007 – March 2011)

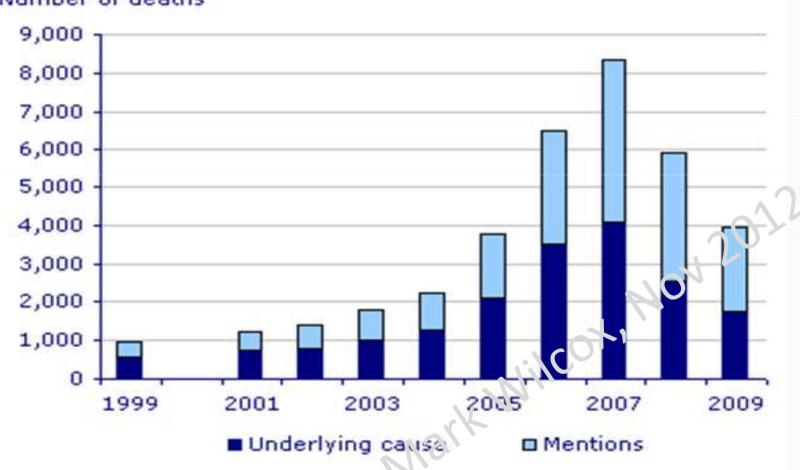
CDI outcome - CDRN database

 30-day all-cause mortality was 20.3% in those who responded to this question (n = ~2000)

Variable	2008–10		2008–9		2009–10	
	OR	P-value	OR	P-value	OR	P-Value
Age > 60 vs <u><</u> 60 years	2.78	<0.001	2.53	0.018	3.06	0.001
Fluoroq. (taken vs not)	1.57	0.051	1.08	0.853	0%	0.024
Had surgery vs not	17.6	<0.001	87.9	<0.001	0.746	0.606
Yorkshire & H. vs other	0.513	0.023	0.198	269.69	0.792	0.512
Severe CDI	4.89	<0.001	5.41	<9.001	6.06	<0.001
027 vs other ribotypes	1.99	<0.001	1.51	0.004	1.85	<0.001


OR = odds ratio

http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1258560554236



Strain ribotype & risk of CDI-related death

Numbers of death certificates mentioning *C. difficile* England & Wales, 1999-09

Number of deaths

Office for National Statistics on deaths involving *Clostridium difficile* in England & Wales. <u>http://www.statistics.gov.uk/cci/nugget.asp?id=1735</u>

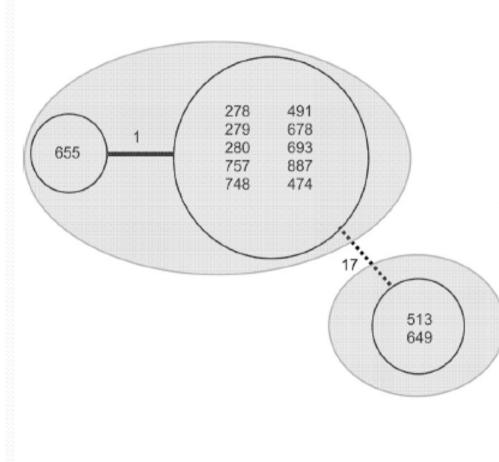
Vol. 49, No. 12

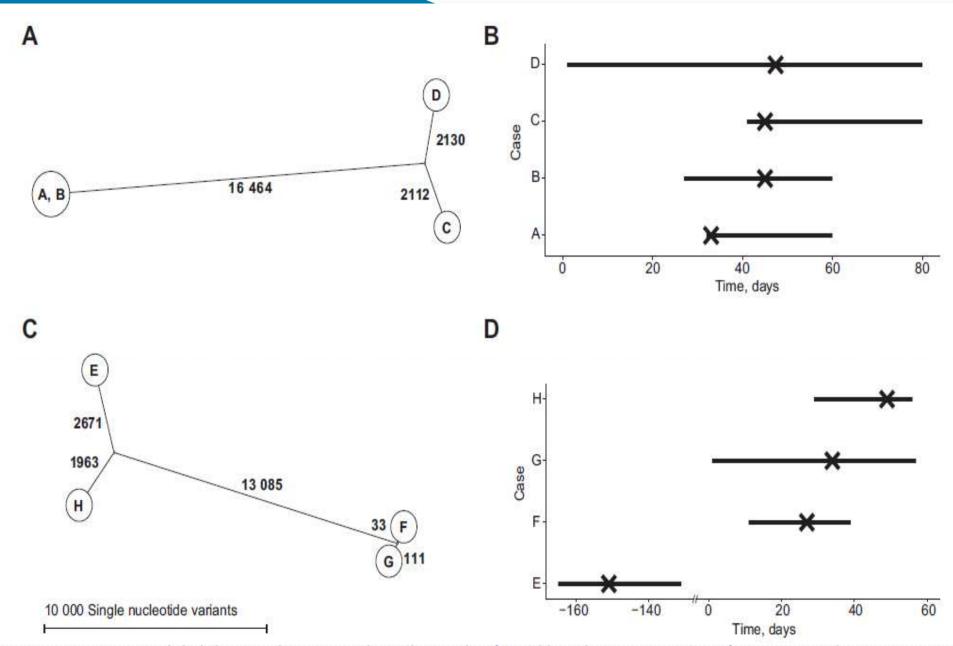
JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 2011, p. 4333–4337 0095-1137/11/\$12.00 doi:10.1128/JCM.05873-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

An Enhanced DNA Fingerprinting Servi To Investigate Potential *Clostridium difficile* Infection Case Clusters Sharing the Same PCR Ribotype[∇]

Warren N. Fawley¹ and Mark H. Wilcox^{1,2*} on behalf of the *Clostridium difficile* Ribotyping Network for England and Northern Ireland

Department of Microbiology, The General Infirmary, Old Medical School, Leeds LS1 3EX, United Kingdom,¹ and Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom²


MLVA fingerprinting to investigate ribotype clusters


- 53 clusters, 2-41 patients, 286 isolates, 27 institutions
- 19% comprised unrelated isolates
- 34% comprised a mixture of related & distinct
- CD 027 significantly more likely to be associated with transmission
- Value of highly discriminatory fingerprinting to confirm or refute CDI transmission

Fawley WN, Wilcox MH. J Clin Microbiol 2011;49:4333-7.

Isolate	Patient location at time sample submitted (Hosp, Ward)	Date of cytotoxin- positive faecal specimen
280	1, B	July 09
278	1, C	August 09
279	1, A	August 09
513	1, E	October 09
649	1, B	November 09
757	1, F	November 09
748	1, A	November 09
474	1, G	January 10
491	2, H	January 10
678	2, H	January 10
655	2, H	February 10
693	2, J	February 10
887	2, J	February 10

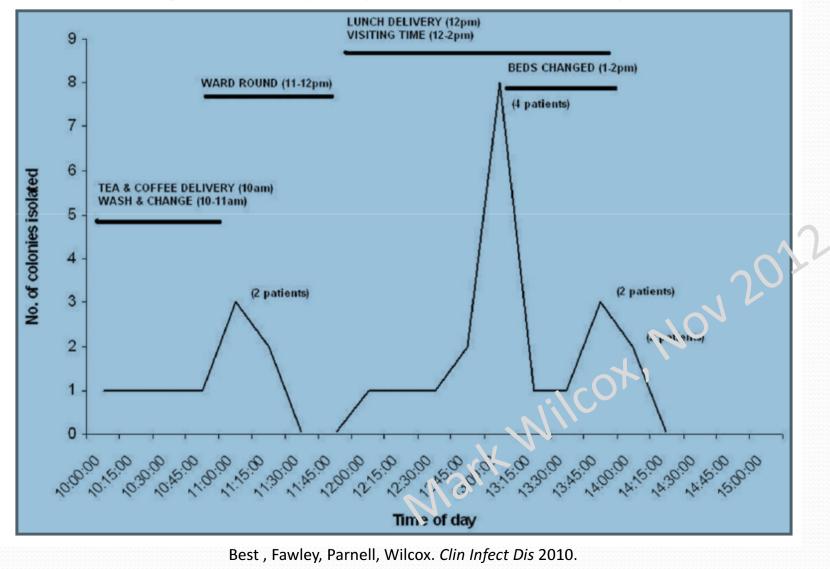
Eyre DW, Golubchik T, Gordon NC, et al. A pilot study of rapid benchtop sequencing of *S. aureus* and *C. difficile* for outbreak detection and surveillance. BMJ Open 2012; 2 (3).

Key points (v)

- Investigation of clusters / transmission
 - Some C. difficile types are clearly associated with worse outcome
 - Need for access to CD typing / more discriminatory methods to investigate suspected clusters and routes of transmission
 - We focus current efforts on linking known CDI cases
 - What about unknown 'cases/donors/excretors' ?
 - Potential of whole genome sequencing

CDI key control measures

- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
 - Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water
- Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients


Extent of C. difficile environmental contamination

Date	Sample	Ribotype	MLVA type
17/02/2009	Air (12.50)	106	24-14-23-2-6-4-2
	Bed	106	24-14-22-2-6-4-2
	Table	106	24-14-22-2-6-4-2
	Sink	106	24-14-22-2-6-4-2
	Bin	106	24-14-22-2-6-4-2
	Commode	106	24-14-22-2-6-4-2
	Floor	106	24-14-22-2-6-4-2
18/02/2009	Bed	106	24-14-22-2-6-4-2
	Table	106	24-14-22-2-6-4-2
	Commode	106	24-14-22-2-6-4-2
	Air (11.40)	106	24-14-22-2 6.4.2
	Air (12.40)	106	24-14-22-2-6-4-2
25/02/2009	Air (11.10)	106	24-14-22-2-6-4-2
	Air (15.45)	106	24-14-22-2-6-4-2
	Bed	106	24-14-22-2-6-4-2
	bin	106	24-14-22-2-6-4-2
	walking frame	100	24-14-22-2-6-4-2
	stool	106	24-14-22-2-6-4-2

Best , Fawley, Parnell, Wilcox. Clin Infect Dis 2010.

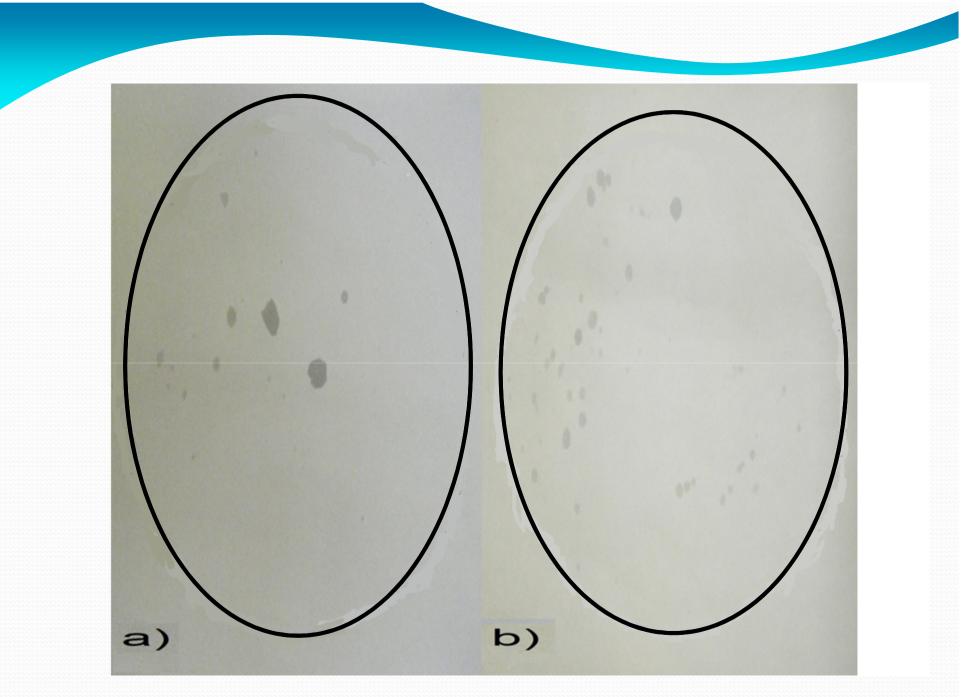
Airborne C. difficile total number of C. difficile colonies

recovered throughout the day (10 patients tested for 2 days)

Millions of *C. difficile* per gram faeces

<7 environmental ()
C. difficile spores
 per cm² establish
 infectio0 in mice
5 m
 Nark

Lawley TD, et al. J Bacteriol 2009;191:5377-86.


Comparison of recovery of *C. difficile* from the air with the toilet seat open and closed

Sampla	<i>C. difficile</i> detected in air samples 0-90 mins after each flush mean CFU <i>C. difficile</i>					
Sample Time	Control tests (water only added)	Toilet lic 10cm above	Seat height	25cm above	oilet lid ope 10cm above	en Soat beight
0-30 mins	0	4	3	7	0 ⁺	35
30-60 mins	0	1	7	14 1 m	0	3
60-90 mins	0	0	013	1	0	0

Best EL, Sandoe JA, Wilcox MH. J Hosp Infect 2012;80:1-5.

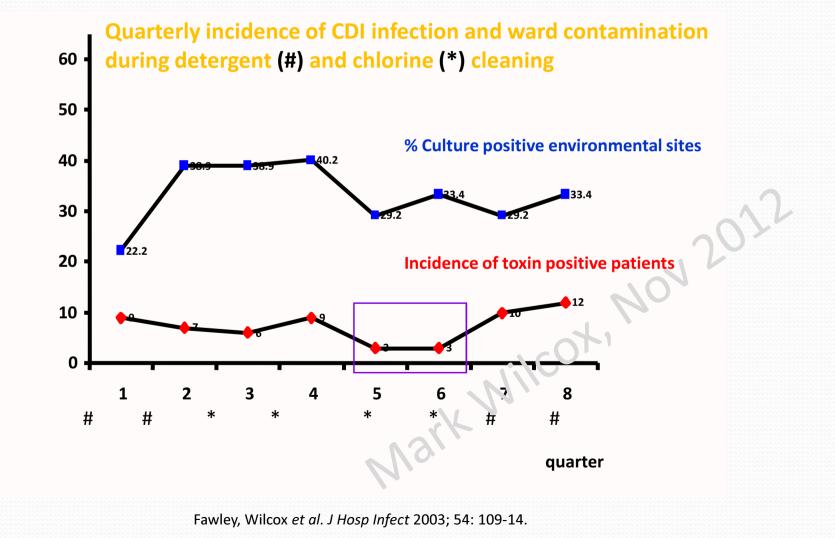
Droplets ejected from toilets following a single flush

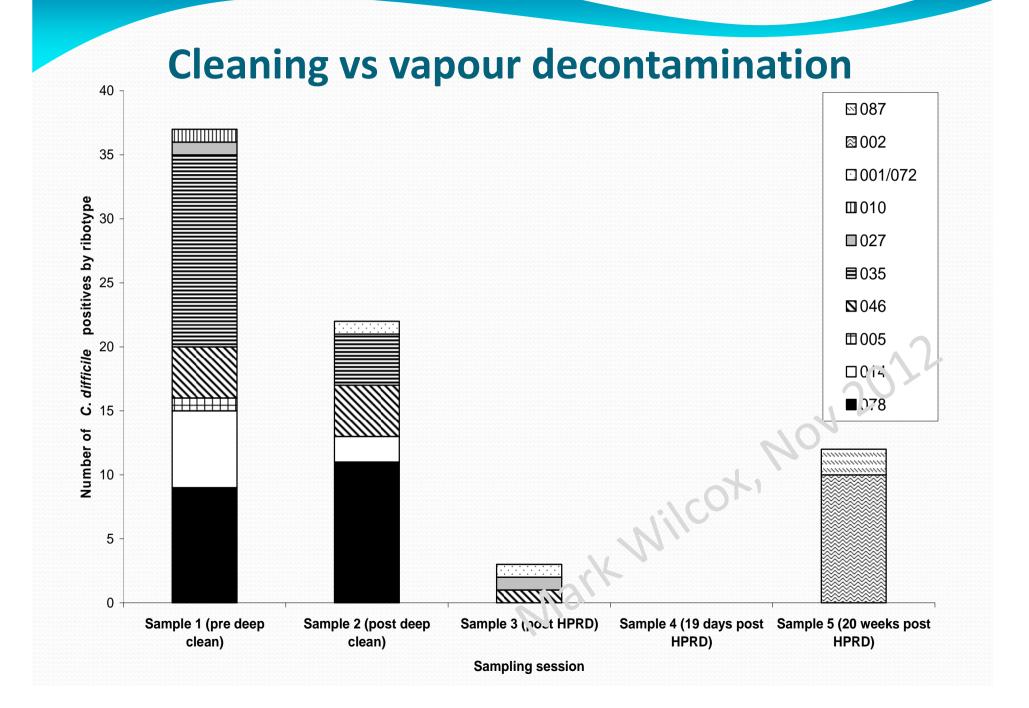
Location	Toilet style	Usage	No. of droplets*
Microbiology	A	staff	8
Microbiology	A	staff	13
Hospital ward	A	staff	12
Hospital ward	A	patient	7
Hospital ward	A	patient	14
Hospital ward	A	patient	16
Hospital ward	A	patient	26
Hospital ward	В	patient	55
Hospital ward	В	Patient	
Hospital ward	В	patient	61
Hospital ward	в	patient	46
Hospital ward	в	prient	29

Best EL, Sandoe JA, Wilcox MH. J Hosp Infect 2012;80:1-5.

Key points (v)

- Airborne spread of *C. difficile*
 - Aerosolisation of CD occurs commonly (but sporadically) particularly in symptomatic CDI patients
 - This may help to explain the widespread dissemination of CD in the hospital environment
 - This will compromise the effectiveness of environmental cleaning/decontamination
 - Importance of early single room isolation to limit CD dissemination (especially to control epidemic strains)
 - Lidless toilets appear to contribute to the risk of *C. difficile* environmental contamination


CDI key control measures


- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
- Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water
- Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients

Environmental intervention CDI studies

- Kaatz et al. Am J Epidemiol 1988;127:1289-93
- Mayfield et al. Clin Infect Dis 2000;331:995-1000.
- Mark Wilcox, Nov 2012 Wilcox et al. J Hosp Infect 2004;54:109-14.
- Other studies

Evidence for role of chlorine-based cleaning (1000 ppm) to control CDI

CDI key control measures

- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
- Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water

• Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients

Antibiotics and risk of CDi

Need to minimise all antibiotic use - polypharmacy and duration

High risk

cephalosporins clindamycin

Medium risk

ampicillin/amoxy co-trimoxazole macrolides fluoroquinolones

Evidence to support the restriction of these as control measure for CDI

Low risk

aminoglycosides metronidazole anti-pseudomonal penicillins <u>1</u> B-lactamase inhibitor tetracyclines mfampicin vancomycin

CDI may still occur !

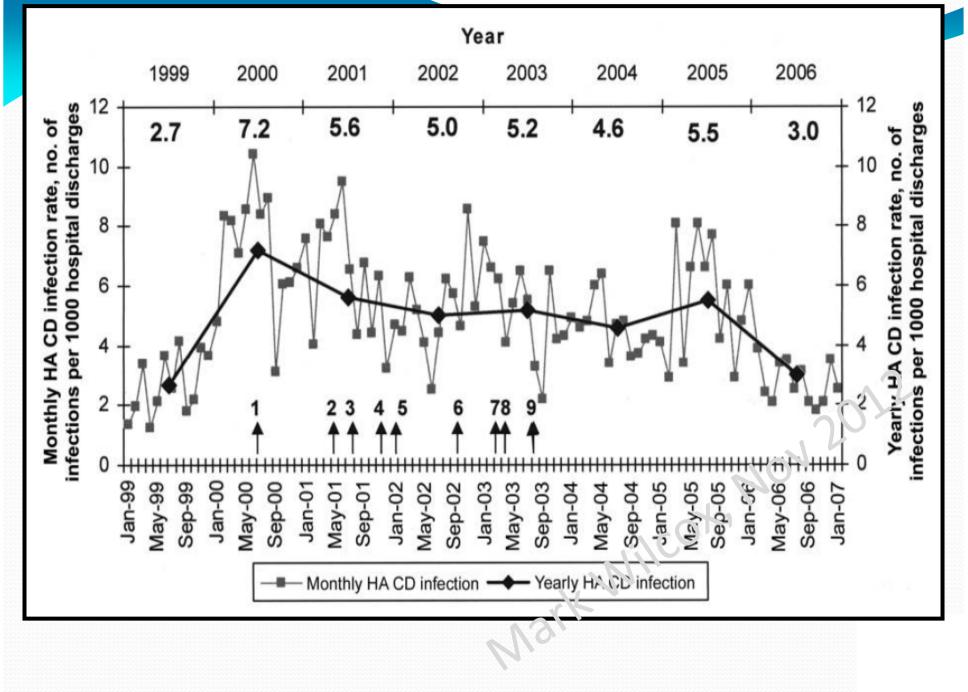
Antibiotic polypharmacy in CDI cases

CDRN referrals in four consecutive years

Year	N (%) reporting antibiotic exposure	Proportion (%) receiving >1 antibiotic	Proportion (%) receiving ≥3 antibiotics
2007-08	954 (44)	66	30012
2008-09	1874 (79)	61	25
2009-10	3209 (56)	63, j\CO	17
2010-11	4937 (70)	Nar 59	7

http://www.hpa.org.uk/ProductsServices/MicrobiologyPathology/LaboratoriesAndR eferenceFacilities/ClostridiumDifficileRibotypingNetworkService/

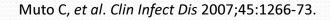
Common antibiotics reported in CDI cases CDRN referrals in four consecutive years


	Proportion (%) reporting use of:				
Year (n)	Cephalosporins	Co-amoxiclav	Fluoroquins	Piperacillin- tazobactam	
2007-08 (954)	38	33	27	?	
2008-09 (1874)	31	33	13	2:4	
2009-10 (3209)	16	30	7	24	
2010-11 (4937)	8	18	Nil4	21	

Note: antibiotic receipt should not be taken to imply CDI causality

http://www.hpa.org.uk/ProductsServices/MicrobiologyPathology/LaboratoriesAndRefere nceFacilities/ClostridiumDifficileRibotypingNetworkService/

CDI (antibiotic) risk factor studies


- Most are flawed
- Inappropriate controls
- Failure to control for key confounders
- Antibiotic duration
- Mark Wilcox, Nov 2012 Antibiotic polypharmacy
- Exposure to C. difficile
- Multiple interventions

Muto C, et al. Clin Infect Dis 2007;45:1266-73.

Bundle of interventions to control CDI

- 'In 2005, a formulary switch from levofloxacin to moxifloxacin plus ciprofloxacin resulted in increased overall flouroquinolone use, yet CDI rates further decreased in 2006'
- 'Therefore, blaming antimicrobial agents alone may be too simplistic'
- 'However, reducing the use of antimicrobials agents may contribute to sustained low rates of infection'

CDI key control measures

- An early warning system to identify changes in local epidemiology: this needs accurate diagnosis
- Increased emphasis on investigation of cases (RCAs) and especially clusters (ribotyping, MLVA)
- Reduce risk of transmission by rapid isolation or cohorting of suspected cases
- Introduction of CDI treatment pathways
- Environmental cleaning using chlorine containing disinfectants
- Hand (and skin) hygiene with soap & water
- Optimised/reduce overall antibiotic use, including restricting high risk agents in high risk patients